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Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany
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Abstract
Recent work on stochastic interacting particle systems with two particle species
(or single-species systems with kinematic constraints) has demonstrated the
existence of spontaneous symmetry breaking, long-range order and phase
coexistence in nonequilibrium steady states, even if translational invariance is
not broken by defects or open boundaries. If both particle species are conserved,
the temporal behaviour is largely unexplored, but first results of current work
on the transition from the microscopic to the macroscopic scale yield exact
coupled nonlinear hydrodynamic equations and indicate the emergence of novel
types of shock waves which are collective excitations stabilized by the flow
of microscopic fluctuations. We review the basic stationary and dynamic
properties of these systems, highlighting the role of conservation laws and
kinetic constraints for the hydrodynamic behaviour, the microscopic origin of
domain wall (shock) stability and the coarsening dynamics of domains during
phase separation.

PACS numbers: 05.70.Ln, 45.50.−j, 05.10.Gg, 05.50.+q, 47.40.Nm, 47.52.+j

1. Introduction

1.1. Why we are interested in driven diffusive systems

The investigation of interacting particle systems far from equilibrium has shown that one-
dimensional driven diffusive systems with short-range interactions exhibit a remarkably rich
variety of critical phenomena. Unlike in thermal equilibrium one observes spontaneous
symmetry breaking, long-range order and phase coexistence in the steady state if the system
evolves under certain microscopic kinetic constraints or has more than one conservation law.
A large body of work has been devoted to microscopic stochastic lattice models for driven

0305-4470/03/360339+41$30.00 © 2003 IOP Publishing Ltd Printed in the UK R339

http://stacks.iop.org/ja/36/R339


R340 Topical Review

diffusive systems where classical interacting particles move under the action of a random force
preferentially in one direction1.

The ongoing interest in these systems is for many reasons. The most obvious one is
derived from a fundamental task of statistical mechanics, namely the desire to understand the
emergence of macroscopic collective properties from microscopic interactions, with a view
on general features such as interaction range (short- or long-range), kinetic constraints or the
presence of conservation laws. It has turned out that parts of that program can be carried
out to a very satisfactory degree in the simplest case of driven diffusive systems of identical
conserved particles with hard-core interaction. Despite their simplicity, these systems exhibit
a rich and rather non-trivial dynamical and stationary behaviour. For an exactly solvable
paradigmatic model, the asymmetric simple exclusion process (ASEP, see below), not only
the macroscopic nonlinear hydrodynamics have been derived rigorously [1, 3] but also detailed
information about universal phenomena, including shock diffusion [2], the microscopic origin
of the stability of shocks [4] and the dynamical structure function [5] could be obtained in
the past decade. It is then natural to ask what to expect in the presence of more than one
conservation law, i.e., in systems with several distinct species of particles.

Secondly, in the absence of a general framework for studying nonequilibrium systems
(analogous to the usual principles of equilibrium statistical mechanics), one needs to
understand coarse-grained dynamical properties not only for their own sake, but also in
order to predict what stationary states these systems evolve into. For one-species systems with
open systems this has led to a theory of boundary-induced phase transitions which provides a
general framework for a quantitative description of the steady-state selection in driven diffusive
systems which are in contact with particle reservoirs at their boundary. Unlike in equilibrium,
boundary conditions determine the bulk behaviour of driven diffusive systems in a decisive
fashion which can be captured in terms of an extremal principle for the current [6, 7]. The
resulting phase diagram for the nonequilibrium steady state is determined by the interplay
of localized excitations and shocks. Again it is natural to ask for principles of steady-state
selection and the resulting phase diagram in systems with many species of particles which are
characterized by a conserved current for each particle species.

A third motivation for studying these systems stems from numerical evidence which
shows that addressing these questions not only leads to an encyclopedic accumulation of
knowledge. Rather it was found that there is exciting new physics in systems with more
than one species of particles, including spontaneous symmetry breaking and phase separation
phenomena, even in translation-invariant systems [8, 9] without the beneficial ‘assistance’
of open boundaries or static defects [10] in facilitating phase transitions. It also emerged
that similar phenomena may occur in single-species systems with one conservation law,
provided there are kinetic constraints determined by a zero-rate condition somewhat analogous
to the zero-temperature condition for long-range order in equilibrium systems with short-
range interactions. Neither the hydrodynamic behaviour of systems with more than one
conservation law nor the microscopic conditions for the occurrence of critical phenomena are
well understood.

These are some—and by far not all—of the fundamental reasons to investigate translation-
invariant driven diffusive systems and to clarify the role of conservation laws and kinetic
constraints for their dynamical and steady-state properties. Other important issues include
the calculation of exact stationary distributions and large deviation functions, nonequilibrium

1 Strictly speaking one should call these models mesoscopic as interactions on scales below the particle size are
replaced by effective interactions. However, the notion microscopic has become standard and will be used here. It is
justified in relation to a truly macroscopic description where particle positions are replaced by coarse-grained density
fields.
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Figure 1. Asymmetric simple exclusion process and related zero-range process. In the ASEP,
particles on a lattice hop with rates Dr,l to the right and left respectively, provided the target site is
empty. In the case of open boundaries they are created or annihilated with rates α, β, γ, δ at the
boundary sites 1, L as indicated in the figure. Reflecting boundaries correspond to α = β =
γ = δ = 0, in the case of periodic boundaries particles may hop between sites L, 1. In the
associated zero-range process consecutive particles correspond to sites, the length of empty
intervals between them to occupation numbers. Hopping of particle k from a given site in the
ASEP corresponds to hopping between sites k − 1, k in the ZRP.

Yang–Lee theory and phase transitions in systems with absorbing states. Some of these
topics are discussed in a complementary review by Evans [11]. We also refer to [12–15]
where closely related questions in nonconservative systems and higher dimensions are treated
and to [16] and references therein for phase transitions in systems with continuous state
space. Here we focus on the issues of hydrodynamic behaviour, the microscopic origin of
domain wall (shock) stability, spontaneous symmetry breaking and coarsening of domains in
one-dimensional conservative lattice systems, with particular emphasis on models with two
conservation laws and on exclusion processes with one conservation law insofar that they are
relevant in the context of the nonequilibrium bulk phase transitions that we review here.

1.2. Basic models

The asymmetric simple exclusion process [3, 4] has become a paradigmatic example for a
driven diffusive system and has begun to attain a status in the study of nonequilibrium systems
somewhat similar to the role the Ising model plays in equilibrium statistical mechanics. In
this stochastic lattice gas model each lattice site is occupied by at most one particle. Particles
hop randomly in continuous time to the right neighbouring site with rate Dr and to the left
with rate D� respectively, provided the target site is empty. Otherwise the attempted move is
rejected. We present this hopping rule as follows:

A0 → 0A with rate Dr

0A → A0 with rate Dl.
(1.1)

Hopping attempts take place independently with an exponential waiting time distribution with
mean Dr + D� (figure 1).

These simple rules specify completely the stochastic bulk dynamics of the system2. For
a finite lattice with L sites one has to specify boundary conditions. Most commonly studied
are periodic boundary conditions, reflecting boundaries (hopping confined to a box), and open
boundary conditions where particles may enter and exit the lattice at the boundary sites 1 and L
2 For a mathematically precise definition of the process, see [3, 17].
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respectively with rates α, β, γ, δ (see figure 1). By choosing α = ρ1Drλ1, γ = (1−ρ1)Dlλ1 as
left boundary rates and β = (1−ρ2)Drλ2, δ = ρ2Dlλ2 the open system may be interpreted as
being connected to particle reservoirs with constant density ρ1 at the left (auxiliary) boundary
site 0 and density ρ2 at the right (auxiliary) boundary site L + 1 respectively. The parameters
λ1,2 are introduced to describe a hopping mechanism between the reservoirs and the chain
which may differ from the hopping inside the chain. From a physics point of view this would
correspond to activation energies for entering (leaving) the system which are different from
those for hopping in the bulk.

This is the simplest model that incorporates the basic features of a driven diffusive system
with short-range interactions. The short-range interaction is taken care of by the hard-core
exclusion constraint. The randomness of the hopping events models diffusive motion of the
free particles outside the interaction range. The hopping asymmetry corresponds to a driving
force that leads to a biased average motion and hence to a macroscopic particle current even in
the stationary state of the system, except in the case of reflecting boundary conditions, where
the system reaches an equilibrium state [17, 18]. Throughout this paper we assume a bias in
positive lattice direction.

Note that each lattice site can be in two states, either occupied or empty, and hence
the system can be described in terms of occupation numbers nk = 0, 1. Implicit in this
description is the absence of any internal degree of freedom that particles may possess. Hence
all particles are indistinguishable. The number of particles is conserved in the bulk, but not at
the boundaries in the case of the open system. The single bulk conservation law gives rise to
a current via the lattice continuity equation

d

dt
ρk = jk−1 − jk (1.2)

for the expected density ρk = 〈nk〉, averaged over realizations of the stochastic time evolution
and also averaged over different initial distributions. For the ASEP the current follows
straightforwardly from the definition,

jk = Dr〈nk(1 − nk+1)〉 − D�〈(1 − nk)nk+1〉. (1.3)

For periodic boundary conditions there is a family of stationary distributions which are
Bernoulli product measures with density ρ, i.e., at each given site the probability of finding
a particle is given by ρ, independent of the occupation of other sites. According to (1.3) the
stationary current

j = (Dr − D�)ρ(1 − ρ) (1.4)

is a nonlinear function of the density with a single maximum at ρ = 1
2 .

If the ASEP is confined to a box (corresponding to ‘open boundaries’ with α = β = γ =
δ = 0) the system evolves into an equilibrium state where essentially all N particles form a
cluster of macroscopic size ≈N with density ρ ≈ 1 and the current vanishes. The density
profile has a non-trivial form (deviating significantly from 0 or 1 respectively) only at the
left edge of the cluster, denoted below as ‘shock’, ‘domain wall’ or ‘interface’ respectively,
depending on context. The width of this interface is finite on the lattice scale, i.e., microscopic.
In the grand-canonical ensemble there are no correlations, but the density profile has the form
of a hyperbolic tangent [17]. The canonical distribution is more complicated, with correlations
within the interface region, but has a similar density profile [18].

The open ASEP has a intriguing phase diagram with a nonequilibrium first-order transition
at ρ1 = 1 − ρ2 between a low-density phase with bulk density ρ = ρ1 to a high-density phase
with bulk density ρ = ρ2. There are nonequilibrium second-order transitions from both phases
to a maximal current phase with ρ = 1

2 , irrespective of the boundary densities in the square
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defined by ρ1 > 1
2 , ρ2 < 1

2 . The density profiles are non-trivial in all phases [19, 20]. At the
first-order transition line one has phase coexistence with domains of densities ρ1,2, separated
by a microscopically sharp domain wall (shock), the position of which performs a random
walk over the whole lattice. The exact solution of the stationary density profiles and a theory
of boundary-induced phase transitions which provides a microscopically oriented derivation
of the phase diagram is reviewed in detail in [4]. The bulk densities as a function of boundary
densities were obtained by Liggett [21] using probabilistic methods. More generally, the
theory of boundary-induced phase transition which takes into account the flow of fluctuations
has revealed that the bulk density that simple open driven diffusive systems select can be
obtained from the extremal principle [7]

j = max
ρ∈[ρ2,ρ2]

j (ρ) for ρ1 > ρ2

j = min
ρ∈[ρ1,ρ2]

j (ρ) for ρ1 < ρ2
(1.5)

involving the stationary current–density relation that can be obtained, e.g., from measurements
or exact calculations in periodic systems where the density is conserved. The boundary
densities ρ1,2 entering (1.5) are non-universal functions of the rates at which particles enter
and leave the system. For ρ2 = 0 the extremal principle reduces to a maximal current criterion
which was first proposed by Krug [6] on a phenomenological basis.

One may relax the exclusion constraint to allow for up to m particles on each lattice
site. This gives rise to the partial exclusion process [22, 23] with m + 1 states per site.
Also particle systems with nonconserved internal degrees of freedom such as velocities in
traffic flow models [24, 25] have more than one possible state per site, but still obey a single
continuity equation of the form (1.2). The form (1.3) of the current, however, strongly depends
on the microscopic hopping rules. An important model without exclusion is obtained by the
following simple mapping of the ASEP: since the order of particles is conserved in the ASEP
one may regard particles as sites of a new lattice gas system and the number of vacancies nj

between particles j, j + 1 as occupation numbers on site j . This gives rise to a special case of
the zero-range process (ZRP) [26]. The particle hopping rates in the ASEP turn into the rates
of decreasing the number of particles by one unit in the ZRP, with hopping to the right in the
ASEP corresponding to hopping to the left in ZRP and vice versa (figure 1).

The general homogeneous ZRP allows for hopping of a particle from site j with a rate
wn that depends only on the unrestricted occupation number nj . Here we shall consider
only nearest neighbour hopping (figure 2) with asymmetry factors p, q to the right and left
respectively. Below a critical density (which may be infinite, see section 4), the periodic and
infinite system has a family of stationary distributions which are product measures where the
probability of finding n particles on a given site is given by [26, 27]

p0 = 1

Z
pn = 1

Z
zn

n∏
i=1

1/wi (1.6)

with the ‘fugacity’ z fixing the mean particle density and the one-site nonequilibrium analogue

Z =
∞∑

n=0

zn

n∏
i=1

1/wi (1.7)

of the partition function. The density as a function of z is then given by

ρ = z
d

dz
ln Z. (1.8)
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Figure 2. Mapping of the ASEP to a restricted solid-on-solid (RSOS) growth model. An empty
(occupied) site corresponds to a slope +1 (−1) in the associated interface. Hopping to the right
(left) thus is equivalent to a deposition (evaporation) of an atom. The broken line at the bottom of
the interface marks a completed layer. In the absence of chipping the interface cannot shrink below
a completed layer which yields a minimal height model. For an anchored interface the minimal
height of the interface equals the height of the topmost completed layer. In two-species models
the definitions are analogous, but with allowed local interface slopes 0, ±1.

According to its definition via the lattice continuity equation for the ZRP the stationary particle
current is given by

j = (p − q)

∞∑
n=1

pnwn = (p − q)z. (1.9)

The density dependence of j in the stationary state can be obtained by inverting the relation
ρ(z) which is a monotonically increasing function of ρ [8]. Note that the radius of convergence
depends on the choice of rates wi (see section 4).

In order to describe a system with two different conserved species A,B of identical
particles (or alternatively, tagged particles or particles with two internal states which do not
affect its dynamics) one needs a model where each lattice site can be found in at least three
different states: empty or occupied by either an A-particle or a B-particle. The most simple
extension of the exclusion process that accounts for the possibility of two particle species may
hence be described by the six hopping rates

A0 → 0A with rate DA0

0A → A0 with rate D0A

B0 → 0B with rate DB0

0B → B0 with rate D0B

AB → BA with rate DAB

BA → AB with rate DBA.

(1.10)

There is no established name for this generic process and we shall refer to it as two-species
ASEP. Associated with the two conservation laws there are two currents defined by

d

dt
ρA

k = jA
k−1 − jA

k (1.11)

d

dt
ρB

k = jB
k−1 − jB

k . (1.12)
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Note that in general jA and jB depend on both occupation numbers nA
k , nB

k respectively. Hence
one has two coupled lattice continuity equations. The stationary distribution of this process
and hence the current–density relation is known only on certain parameter manifolds,
see below.

The natural order parameter that describes the macroscopic state of the system is the
particle density of each species. Hence for each conservation law there is an associated order
parameter. Note, however, that one may have conservation laws that are only indirectly related
to particle densities which by themselves may not be conserved. For example, in a reaction–
diffusion system A + B → 0 [28] where A- and B-particles annihilate upon encounter (i.e.,
react into an inert reaction product), the difference s = nA − nB still gives rise to a single
conservation law with an associated current, even though nA and nB are not individually
conserved. By interpreting A-particles (B-particles) as carriers of a positive (negative)
electrical charge, one could speak in this case of charge conservation. In the two-species
catalytic reaction A + B → B + B [29] the total density n = nA + nB is conserved.
Analogously, one may also consider models with two conservation laws, but more than
three states per site. Examples include two-lane models [30, 31] or bricklayer models [32].

There is no answer to the question to which extent or under which circumstances the
existence of internal degrees of freedom matters for the macroscopic properties of driven
diffusive systems. Since, however, it is now clear that the number of conservation laws is
important, we shall categorize the models in the following according to this property.

1.3. Closely related models, not covered in this review

Equivalence to two-dimensional equilibrium systems. The time-dependent one-dimensional
stochastic processes discussed above are equivalent to two-dimensional equilibrium systems,
defined by some vertex model [33]. The time evolution is encoded in the transfer matrix
of the two-dimensional (2D) model, e.g., the discrete-time ASEP with a sublattice parallel
update corresponds to the six-vertex model [34–37]. For three-state models the construction is
entirely analogous and leads to higher vertex models. Recently also integrable vertex models
with an unlimited number of states have been investigated [38]. They correspond to the zero-
range representation of the ASEP. The stationary distribution of a one-dimensional process
with L sites corresponds to the equilibrium state of the associated two-dimensional model,
defined on a strip of dimension L×∞. Processes defined in continuous time are derived from
the transfer matrix of the vertex model in the same way as one obtains quantum spin-chain
Hamiltonians [4]. Hence the Markov generator of the stochastic time evolution is equivalent
to some (usually non-Hermitian) one-dimensional quantum Hamiltonian. This opens the tool
box of condensed-matter physics for the study of stochastic dynamics. The ASEP (1.1), the
two-species ASEP (1.10) on a certain parameter manifold [129] and also various single-species
[39, 40] and two-species reaction–diffusion models [29, 39, 41–43] correspond to integrable
models, for which Bethe ansatz and related methods yield exact results on the dynamics of
the system.

We note that by considering the stationary states of one-dimensional nonequilibrium
systems as equilibrium distributions of two-dimensional systems the occurrence of long-range
order and phase separation becomes somewhat less mysterious. However, the important
question of how these phenomena emerge from the microscopic laws of interaction cannot
be answered by this formal equivalence. We mention in passing that in another mapping the
steady-state distribution describes the equilibrium properties of a directed polymer in a 2D
random energy landscape [44].
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Higher dimensional nonequilibrium models. The extension of the models discussed above
to higher dimensions is technically rather straightforward and obviously of importance.
For suitably chosen initial distribution some features of shocks may be present in higher
dimensional driven diffusive systems, but many of the physical properties of the one-
dimensional systems discussed below are expected to change dramatically not only because
of the upper critical dimension dc = 2 for diffusion (which makes mean-field behaviour more
likely to describe the systems), but also because of the absence of blocking effects due to
hard-core exclusion. Moreover, there may be phase transitions in the unbiased equilibrium
counterparts of the model which lead to new phenomena in the biased case. Two-dimensional
driven diffusive systems are reviewed in detail in [12].

Many conservation laws. A natural, but for the scope of this review too far-reaching, question
is the behaviour of particle systems with many conservation laws. Not surprisingly, no general
picture has emerged yet. An interesting generalization of the ASEP comprises lattice systems
with particles covering more than one lattice site, but moving only by one site in each
infinitesimal time step [45–49]. Remarkably, these models are also integrable, including
polydisperse models with particles of different sizes (and hence as many conservation laws).

Another class of models with many conservation laws arises from assigning to each
particle its own intrinsic hopping rate. In the zero-range mapping one thus obtains a process
with site-dependent quenched random hopping rates. For rates drawn from some distribution
the hydrodynamic behaviour has been studied in [50–52]. For certain distributions the system
with asymmetric hopping rates undergoes at some critical density a transition to a platoon
state, where fast particles are trailing a slow one reminiscent of traffic flow. This transition
is a classical analogue of Bose–Einstein condensation [53, 54] and is quite analogous to the
condensation transition in ordered systems to be discussed in detail below. A similar model
with passing of particles has also been studied [55, 56]. Remarkably, the phase diagram
of the open system both with [57] or without passing [58] has a structure similar to that of
the usual one-species exclusion process [19, 20] which can be explained by the theory of
boundary-induced phase transitions for systems with one conservation law [7, 59].

2. Applications

The motivation we gave for studying the systems reviewed here addressed general questions
of nonequilibrium statistical mechanics, with little reference to actual realizations where such
processes might play a role. Applications are actually numerous and include not only quasi-
one-dimensional settings (e.g. molecular diffusion in nanoporous materials such as zeolites
[60–65], single-file diffusion of mesoscopic colloidal particles [66] or ionic conduction in
narrow channels [67–69]) but also—through various mappings—two- and three-dimensional
systems. Of course, the basic models (1.1) and (1.10) can serve only as very crude
approximations for any real complex system. However, the universality of critical phenomena
(dynamical and static), of diffusion, of the emergence of shocks and of coarsening allows for
the study of fundamental properties of real systems in terms of simple toy models. It is not
the purpose of this paper to review such applications in any detail, but some significant results
are summarized.

Tracer diffusion. The simplest way of obtaining a system with two conservation laws consists
in considering tagged particles in the usual ASEP. Tagged particles (=particles of type B) have



Topical Review R347

the same physical properties as the usual particles, except that they carry a marker which
allows for their identification, but does not affect the dynamics. Thus one gets the two-species
ASEP (1.4) with

DB0 = DA0 D0B = D0A DAB = DBA = 0. (2.1)

In the unbiased case DA0 = D0A a single tracer particle in a stationary system of
density ρ is predicted to perform anomalous diffusion with a mean-square displacement
〈X2(t)〉 ∝ (1 − ρ)/ρ

√
t [70–72]. Recently, this was confirmed experimentally in the

investigation of tracer diffusion in zeolites [61] using pulsed field gradient NMR [73] and
in the study of single-file diffusion of colloidal particles [66].

Also a driven tracer particle in an environment of unbiased A-particles behaves
subdiffusively with a square-root power law for the mean-square displacement [74]. In
the fully driven case (2.1) the situation is more complex. When averaging over random
initial states of the system according to the weights given by the stationary distribution, the
mean-square displacement was proved to grow linearly in time with a diffusion coefficient
D = (Dr − D�)(1 − ρ) [75]. On the other hand, for fixed initial states (averaging only over
realizations of the process) the variance is expected to grow subdiffusively with power t2/3

[76, 77]. In a finite system with periodic boundaries the variance in the number of hops made
in the totally asymmetric process (D0A = 0) has been calculated exactly in the infinite-time
limit [78, 79] and been found to decrease asymptotically ∝ 1/

√
L in system size. This is to

be expected from dynamical scaling with the well-known dynamical exponent z = 3
2 of the

asymmetric exclusion process [80, 81].

Shock tracking. The ASEP exhibits shocks which on a macroscopic level appear as stable
moving discontinuities in the density profile. It is of great interest to understand the
microscopic structure of shocks, i.e., the density profile and correlations on the microscopic
lattice scale which for a real system is the analogue of intermolecular distances. The
fundamental question is whether the density changes quickly over molecular length scales
or much slower (but still abruptly on macroscopic scales). Trying to answer this question
leads to the problem of defining a microscopic shock position in a given realization of the
process. This can be accomplished by introducing a second-class particle, i.e., a particle that
moves w.r.t. vacancies like an ordinary (first-class) particle, but behaves like a vacancy w.r.t.
to ordinary particles [82]. This leads to rates (1.10) with

DB0 = DA0 D0B = D0A DAB = DA0 DBA = D0A. (2.2)

By studying the motion of a single second-class particle one finds the mean shock velocity

vs = j1 − j2

ρ1 − ρ2
(2.3)

for a shock jumping from a density ρ1 to ρ2 with stationary current j1,2 in each domain.
Expression (2.3) may be deduced directly from mass conservation. For fixed initial states the
variance of the shock position is subdiffusive with power law t1/3 [76], while with averaging
over random initial states with stationary weights at different densities ρ1,2 to the right and
left of the shock (i.e. starting the system from a shock measure) one finds ordinary diffusion.
The diffusion coefficient was conjectured [83] and subsequently proved [84] to be given by

Ds = 1

2

j1 + j2

ρ1 − ρ2
. (2.4)

More detailed information about the microscopic structure of the shock has been proved by
a variety of methods, for a review see [2] and for more recent work [85–87] and references
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therein. It has been established that a shock is truly microscopic in the sense that a rapid
increase in the density of particles occurs on the lattice scale. Loosely speaking, one may say
that the shock performs a random walk with drift velocity (2.3) and diffusion coefficient (2.4).
Some details concerning the structure of a shock are reviewed below.

In a region of smooth variation of the density the second-class particle allows for tracking
localized perturbations of the density [5, 88]. The mean velocity of the second-class particle
is given by the collective velocity

vc = ∂

∂ρ
j (ρ) (2.5)

of a density perturbation. Its mean-square displacement grows superdiffusively with power
law

〈X2(t)〉 − 〈X(t)〉2 ∝ t4/3 (2.6)

where the divergent effective diffusion coefficient 	 crosses over in a finite system to [90]

	 ∼ L
1
2 (2.7)

which is expected from dynamical scaling with dynamical exponent z = 3
2 . As a toy model

for econophysics the position of the second-class particle marks the price of an asset on the
price axis in a limit order market, the first-class particles represent bid and ask prices [89]. The
rigorous result (2.6) corresponds to a Hurst exponent H = 2

3 for fluctuations which compares
well with the empirically observed value H ≈ 0.6 for intermediate time ranges. Introducing
annihilation and creation of particles (cancellation and renewal of orders) leads to the Gaussian
value H = 1

2 after some crossover time, also in agreement with empirical findings.

Traffic flow. The occurrence and microscopic nature of shocks in the ASEP are reminiscent
of traffic jams in vehicular traffic. Indeed, traffic flow may be regarded as a driven diffusive
system [24, 25], albeit with a nonconserved internal degree of freedom, namely the speed of
cars which is dynamically determined by the competition of the desire to move at an optimal
high speed and the necessity to keep a velocity-dependent minimal safety headway to the
next car. At low densities the mean distance between cars is larger than the required safety
headway and essentially all cars move at their optimal speed, with some fluctuations. At high
densities cars have a mean distance below the safety headway corresponding to the optimal
speed which leads to a slowing down of the traffic. As a result the mean current as a function
of density ρ (known as fundamental diagram in the traffic literature) has a maximum like
the exclusion process, albeit with a much broader distribution of the current. In the first
measurement of traffic flow in 1935 by Greenshields [91] the measured mean flow of cars was
approximated by expression (1.4) j ∝ ρ(1 − ρ) that the ASEP yields. More sophisticated
models that provide a much better description of real traffic data have been developed in the
past decade, starting with the Nagel–Schreckenberg model [92] which contains the ASEP
as a simple limiting case. Yet some fundamental features of the ASEP survive in the more
complicated Nagel–Schreckenberg model. The theory of boundary-induced phase transitions
developed in [7, 59] which predicts the stationary phase diagram of a single-species system
with open boundaries in terms of the extremal principle (1.5) explains quantitatively the phase
diagram of the Nagel–Schreckenberg model in terms of effective boundary densities and is
also consistent with measurements of real highway traffic [93].

A description of traffic flow with a lattice model with one conservation law corresponds to
modelling cars which all have the same intrinsic optimal speed—a rather crude approximation
if describing mixed traffic of cars and trucks is envisaged. This naturally leads as a next
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approximation step to a two-species description with ‘fast’ and ‘slow’ particles respectively.
A model with two conservation laws arises also from the study of two-way traffic flow with
interaction between lanes, but no exchange of particles in each lane. Taking the exclusion
process as the simplest possible model one arrives at the model (1.10) with suitably chosen
rates [94–96], see below. A mixture of cars with individual intrinsic speeds leads to the
disordered hopping models mentioned above.

Biophysics. The ASEP with open boundaries was first developed as a simple model for
describing the kinetics of protein synthesis [97, 98]. Here particles are ribosomes moving
along the codons of a messenger RNA. Each codon corresponds to a specific amino acid
which the ribosome uses to assemble a protein. When such a step is completed the ribosome
moves on to the next codon and continues with the addition of the next amino acid to the
growing protein molecule. The injection of particles at one end marks the initialization of the
process, the absorption at the other boundary describes the release of the ribosome. The shock
known from the exclusion process corresponds to a traffic jam of ribosomes which explains an
experimentally observed slowing down of the ribosomes as they approach the terminal point of
the m-RNA where they are released after completion of the protein synthesis [48, 49, 99, 100].

Very recent work has shown that in another biological setting exclusion particles may
describe molecular motors such as kinesins moving along microtubuli or actin filaments in
a cell [101, 102]. Due to attachment and detachment during the motion a description with
nonconservative dynamics where particles are annihilated and created also in the bulk with
a small rate is required. This leads to the model of [89] with open boundaries which yields
interesting new phenomena [103]. Oppositely moving molecular motors give rise to a two-
species exclusion model, in analogy to two-way traffic flow with interaction between lanes.

A two-species exclusion process has also been introduced to describe the motion of ants
along ant trails [104]. While crawling along a trail, the ants—modelled by A-particles hopping
along a lattice—produce pheromones (B-particles) which serve as a marker of the traversed
path for other ants which again produce pheromones for subsequent ants. This is necessary to
stabilize the trail as the pheromones evaporate after some time. The pheromones are modelled
as an immobile particle species which is deposited when a hopping event has taken place and
which disappears with some evaporation rate. The analogy of the flow of ants to traffic flow
has been pointed out in [105] who measured the flow rate versus the density of ants, i.e.,
the current–density relation. The numerical results obtained from the two-species ant trail
model yield qualitatively similar results [104]. Essentially, the same model (with different
parameter values and update rules) has been introduced as a ‘bus route’ model where one
observes bunching of particles (=‘buses’) as they travel along the lattice (‘bus stops’) and pick
up passengers [106]. Bunching of real buses appears to occur on services which do not run
according to fixed schedules, but which stop according to demand.

Polymer dynamics. In polymer networks such as rubber gum or gels, in polymer melts or in
dense solutions of macromolecules such as DNA different polymer strands form a complicated
topological structure of entanglements somewhat reminiscent of a large portion of spaghetti.
The entanglements severely restrict the dynamical degrees of freedom of the polymer chains.
In the framework of the celebrated reptation theory [107] developed by Doi, Edwards and
de Gennes [108, 109] the motion of an individual polymer is viewed as being confined by a
hypothetical tube which models the collective effect of all entanglements of the neighbouring
polymer chains. In an uncrosslinked melt or solution the tube is open at both ends, since at
the end points the motion of polymer segments transverse to its own contour is not restricted
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by topological constraints. This picture results in a snake-like one-dimensional effective
dynamics of polymer segments along the tube, with extra orientational degrees of freedom
only at its ends.

In a lattice model of Rubinstein [110] the reptation dynamics is modelled by the symmetric
exclusion process (1.1) with open boundaries which describe the extra end point degrees of
freedom. With this model exact results for the relaxation of the contour and contour length
fluctuations have been obtained. Recent experiments on the dynamics of single entangled
DNA-molecules in dense solution confirm the findings [111, 112].

Duke [113] extended the model to allow for tracking the spatial orientation of the tube
rather than only its length. This was done in order to introduce a reference axis for describing
gel electrophoresis, i.e., the separation of polymer fragments according to their length L. By
applying an electric field of strength E (the direction of which is the reference axis) a charged
polymer is expected to move through a gel matrix (which provides an entanglement network)
according to the rules of reptation. However, standard reptation theory does not allow for a
prediction of the drift velocity v beyond the linear response regime of small fields or very long
polymers where

v ∝ DEL. (2.8)

Here D is the diffusion coefficient of an entangled polymer, predicted by reptation theory to
scale

D ∝ 1/L2 (2.9)

with length. The extended Rubinstein–Duke model is an asymmetric three-state exclusion
process (1.10) with DAB = DBA = 0 and open boundaries. Exact and rigorous results
[114, 115] confirm the predictions (2.8), (2.9). Moreover, simulations at high fields yield the
drift velocity in the nonlinear regime [116] which is in good agreement with experimental
data [117]. At sufficiently high fields the model exhibits spontaneous symmetry breaking in
the orientation of the polymer chain [118]. The asymptotic behaviour (2.9) of the diffusion
coefficient has also been proved to remain valid in the presence of quenched kinematic
disorder which is described as a generalized Rubinstein model with many conservation laws
where particles have their individual hopping rates [119].

A long-standing mystery in reptation theory has been the asymptotic behaviour of the
viscosity η of a polymer melt which is expected to scale asymptotically [108, 109]

η ∝ L3. (2.10)

However, experiments consistently give higher value ≈3.4 of the scaling exponent. Doi had
suggested this to be a finite-size effect due to tube-length fluctuations [108]. That tube-length
fluctuations lead to an increased effective exponent could be confirmed by a careful numerical
analysis of the Rubinstein–Duke model [120]. Also details of the end-segment dynamics were
shown to have significant non-universal impact on finite-size behaviour of the viscosity and
the diffusion coefficient [121].

Spin relaxation. By interpreting occupation numbers as classical spin variables sk = 1−2nk

the ASEP describes biased Kawasaki spin-exchange dynamics [122] for the one-dimensional
Ising model at infinite temperature. At finite temperature, biased Kawasaki dynamics
correspond to an exclusion process

XA0Y → X0AY with rate DXY
r

X0AY → XA0Y with rate DXY
l .

(2.11)
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with next-nearest neighbour interaction depending on the occupation X, Y . With some
constraints on the rates [67] this model has a stationary distribution

P(n) = 1

Z
e−β(E(n)+µN) (2.12)

which is an Ising measure with energy E = −J
∑

k nknk+1 and a magnetic field µ which plays
the role of a chemical potential in the lattice gas interpretation of the variables. At sufficiently
low temperatures the particle (=spin) current becomes a non-convex function of the density
(=magnetization) and unusual phenomena such as splitting of shock fronts which separate
regions of different density can be observed [7, 123]. In spin language the three-state model
(1.10) describes dynamics of a classical spin-1 system.

Interface growth. It was already realized in the 1980s that the ASEP describes the dynamics
of a fluctuating interface by considering the spin variables as local discrete slopes of an
interface on a two-dimensional substrate [124, 125] (figure 2). Hopping of a particle to the
right between sites k, k + 1 corresponds to the random deposition of a particle on site k of
the dual growth lattice, hopping to the left to an evaporation (figure 2). One thus obtains a
growth model in the universality class of the one-dimensional KPZ equation [126], reviewed
in [44]. We stress that the mapping is not one-to-one. Since in the exclusion presentation only
the local slopes enter, the information about the actual height of the interface gets lost. One
can keep track of the height by introducing an extra random variable for the local height at
some reference point k0, which is increased (decreased) by 2 units whenever a particle hops
across the bond k0, k0 + 1 to the right (left). The steady-state current of the ASEP then gives
the average growth velocity, while fluctuations of the current measure fluctuations in the local
interface height. The extension of this mapping to the generalized exclusion process (1.10) is
obvious, one obtains a system where local height differences may take values 0,±1. Some
growth dynamics considered below have the property that particles cannot be chipped off a
complete layer. This corresponds to a hidden conservation law, which cannot be expressed in
terms of particle occupation numbers alone.

3. Steady states and hydrodynamic limit

3.1. Steady states for driven diffusive systems

As has become clear above, the stationary behaviour, i.e. the state the system evolves into, is the
first question to be addressed in the investigation of driven diffusive systems3. In this paper we
are concerned with the behaviour of translational-invariant systems, defined either on a finite
lattice with periodic boundary conditions or on the infinite integer lattice Z. Consequently,
we shall investigate stationary distributions which are either translation invariant or where
translation invariance is spontaneously broken.

It is important to bear in mind that entirely different dynamics may have the same stationary
distribution. Indeed, for any given distribution one may always construct some equilibrium
dynamics (obeying reversibility) using the principle of detailed balance. Moreover, a strongly

3 This is formally analogous to investigating the equilibrium behaviour of a many-body system and hence in the
mathematical literature stationary states are often referred to as equilibrium states, even though the presence of
macroscopic currents prevents the applicability of the usual notions of equilibrium statistical mechanics such as
reversibility and detailed balance. We note, however, that as long as only a stationary distribution is concerned—
without reference to the stochastic dynamics for which the distribution is stationary—it is convenient to use notions
borrowed from equilibrium statistical physics such as partition function or canonical/grand-canonical ensembles
respectively.
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nonequilibrium system may have the stationary distribution of some equilibrium model, an
example being the KLS model (2.11). Therefore, equality of stationary ensembles for different
systems has no implications whatsoever on the dynamical properties of these models. We also
remark that simple dynamical rules may result in stationary distributions with a complicated
structure and long-range correlations (see below), while complicated dynamical rules may
very well lead to simple stationary distributions. Some stationary distributions for one-species
models have been reviewed in the introduction, here we focus on the two-species ASEP.

Fortunately, not only the single-species ASEP but also many two-species stochastic
particle systems of interest have simple stationary distributions, the simplest being product
measures with stationary probabilities of the form

P ∝ eµANA+µBNB

. (3.1)

Here NA,B = ∑
k n

A,B
k are the conserved total particle numbers of each species (for one-

component systems one has nB
k = 0) and µA,B are the corresponding chemical potentials. For

fixed NA,NB all configurations are equally likely. In equilibrium, such measures correspond
to non-interacting systems.

By writing the master equation for the stochastic dynamics in the quantum Hamiltonian
formalism [4] it is straightforward to determine what dynamics have stationary product
distributions. In this formalism, a product measure is represented by a tensor product vector
|P 〉 = |p〉⊗L. Each factor |p〉 in the tensor product has as components the probabilities of
finding a lattice in a given state. Hopping events between sites k, k + 1 are generated by a local
stochastic matrix hk acting non-trivially only on the terms k, k + 1 in the tensor product. The
full time evolution is generated by the stochastic Hamiltonian H = ∑

k hk and the stationarity
condition for |P 〉 reads

H |P 〉 = 0. (3.2)

Because of translational invariance a stationary product measure therefore satisfies the relation

hk|P 〉 = (dk+1 − dk)|P 〉 (3.3)

with an arbitrary matrix dk acting non-trivially only on site k. This relation is usually very
easy to verify. A similar approach can be chosen for more complicated measures, e.g., Ising
measures with stationary probabilities of the form

P ∝ exp

(
−β

∑
k

(
JAAnA

k nA
k+1 + JABnA

k nB
k+1 + JBBnB

k nB
k+1

)
+ µANA + µBNB

)
. (3.4)

Given these measures the current can be calculated exactly as a function of the densities
ρA, ρB via the invertible relationship between the chemical potentials and the densities. For
the two-state ASEP (1.10) one has a product measure on the parameter manifold defined by

D0A − DA0 + DB0 − D0B + DAB − DBA = 0. (3.5)

For a K-species ASEP with rates DXY for the hopping process XY → YX there are
(K − 1)(K − 2)/2 conditions for the existence of a product measure [127]

D0X − DX0 + DY0 − D0Y + DXY − DYX = 0. (3.6)

In the quantum Hamiltonian formalism the stationary distribution is the ground state
vector of the associated quantum spin chain. For integrable models [128, 129] one may use
the Bethe ansatz and symmetry properties [18] for the explicit construction of stationary states
which are not simple product measures. Using the Bethe ansatz has not been attempted yet
for this class of models. A more popular method is the application of the matrix product
ansatz, reviewed in [130]. In this approach one defines a product measure with matrix
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entries Dm rather than c-numbers as stationary weights for finding a given site in state m.
The matrices Dm together with a set of auxiliary matrices [131, 132] have to satisfy algebraic
relations which are obtained from requiring the matrix product state to satisfy the stationarity
condition (3.2). This leads to algebras with quadratic relations [20, 78, 127, 134–138].

The matrix product construction is equivalent to writing the stationary distribution of the
lattice gas in terms of a transfer matrix C = ∑K

m=0 Dm of some n-state equilibrium system,
determined by the representation of the algebra, in particular its dimension n which may be
finite or infinite. It is clear that finite-dimensional representations correspond to stationary
states with exponentially decaying correlations unless the largest eigenvalue of C is degenerate.
The usual product measures (complete absence of correlations) correspond to one-dimensional
representations. For a detailed review, see [11, 130]. The approach can also be extended to
describe the full time evolution and hence yield time-dependent probabilities of the system
evolving from some nonstationary initial distribution [131–133]. Popkov et al have identified
the parameter manifold for which the dynamics of the two-species ASEP can be solved using
the dynamical matrix product ansatz [129]. Such models are all integrable in the sense of
being associated with an integrable vertex model. The more general models of [127, 138] for
which only the stationary distribution can be constructed with matrix products also include
non-integrable models.

3.2. Steady states with one B-particle

A series of intriguing results have been obtained for two-species systems (1.10) with just
one particle of type B. Conditioning on having a second-class particle at some given site
and calculating the probability of finding a first-class particle at distance r yields the density
profile as seen from the shock position, defined by the position of the second-class particle.
The density approaches its asymptotic shock densities ρ1,2 at an exponential rate, given in
a non-trivial way by the hopping asymmetry Dr/Dl and the densities ρ1,2 [85, 139]. For
a special value of the asymmetry one has Bernoulli measures with densities ρ1,2 to the left
and right respectively. This is the result of a q-deformed SU(2)-symmetry of the Heisenberg
quantum Hamiltonian that generates the time evolution of the process. For this value of the
asymmetry (or, equivalently, arbitrary asymmetry, but special density ρ2) the time evolution of
the shock measure has been calculated exactly for both the continuous-time ASEP [87] and a
discrete-time variant [37]. The shock position performs a lattice random walk with rates given
by the currents and densities in the two branches of the shock. Two consecutive shocks with
densities ρ1,2,3 which can be defined by two second-class particles form a bound state with
finite mean distance and exponentially decaying distance distribution if a condition on ρ2,3

originating in the q-deformed SU(2)-symmetry is met [140]. Generically, two second-class
particles form a weak bound state with infinite mean distance and algebraically decaying
probability p(r) ∝ r−3/2 of being a distance r apart [85, 139].

Using the algebra arising from the stationary matrix product ansatz Mallick [94] has
studied the two-species ASEP (1.10) with rates

DA0 = 1 DB0 = α DAB = β. (3.7)

All other rates are zero. For α = 1, β = 0 the ‘impurity’ particle B corresponds to a tracer
particle, for α = β = 1 it is a second-class particle. This model describes‘cars’ (A-particles)
and ‘trucks’ (B-particles), with a passing rate β. For α < 1 and β < α a single truck acts
like an impurity, hindering the motion of cars. The current of A-particles, the velocity of the
impurity and the density profile as seen from the impurity have been calculated exactly [94].
The system with a single impurity exhibits an interesting phase diagram as a function of the
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ρ<ρc

ρ>ρc
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Figure 3. The main features of density profiles in a periodic system in the presence of a localized
defect or a mobile impurity at site L. Below the critical density there is an exponentially decaying
profile behind the disturbance, above the critical density one has a macroscopic ‘traffic jam’
extending over a finite fraction of the total length L. Depending on the specific system, the density
profile may have some extra structure (not shown here) around the disturbance. The position of
the shock at the end of the high-density domain fluctuates.

hopping rates. In one of the phases the system develops a stationary shock for sufficiently
large density ρ > ρc, analogous to a traffic jam building up behind a slow vehicle. One has
coexistence of a low-density domain and a high-density domain, separated by a domain wall
(figure 3). The diffusion constant of the impurity has also been calculated exactly [90, 141].

Lee et al [95] considered the model (1.10) with rates

DA0 = 1 D0B = γ DAB = 1/β (3.8)

corresponding to oppositely moving particles (slow-moving ‘trucks’ for γ < 1) which interact
upon encounter. In the presence of a single truck (impurity) the average speed of cars (and
hence the current), the speed of the truck and the density profile of cars have been calculated
using again the same stationary three-species algebra [95]. One obtains a phase diagram with
a transition to a jammed phase at a critical density ρc = 1/β (figure 3), with the remarkable
property of having the same statistical properties as a deterministic ASEP with a fixed impurity
[142]. In a finite system of site L the position of the (microscopically sharp) domain wall
fluctuates over a region of length ∝√

L. In a system with two trucks, a weak bound state in
the traffic jam phase is formed. Note that the model (3.8) is equivalent to (3.7) by exchanging
B ↔ 0. However, in this mapping a single truck corresponds to a single vacancy, a scenario
not studied in [94].

Arndt et al [143] introduced a model of type (3.8) with

DA0 = λ D0B = λ DAB = q DBA = 1. (3.9)

For finite densities of both particle species this model is reviewed below. Jafarpour [96]
considered the presence of a single B-particle and calculated exactly for λ = 1 the speed
of A-particles and the impurity and the density profile of A-particles. As in the model of
Lee et al there is a phase transition from a free-flowing to a jammed phase, here at a critical
density ρc = q/2 (figure 3).

We remark that the jamming transition seen in these three versions of the two-species
ASEP may be regarded as a kind of condensation transition where a finite fraction of A-particles
condenses into a macroscopic block trailing the moving impurity. A similar transition also
occurs in the usual ASEP with a fixed blockage [142, 144, 145], corresponding to an immobile
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B-particle and passing event AB0 → 0BA rather than AB → BA. Hence single particles in
a system with two conservation laws play a role somewhat similar to local inhomogeneities
in a system with one conservation law. Note that for a fixed blockage and for the model of
Mallick the jammed phase exists between two critical densities ρ−

c , ρ+
c . Lee et al and Jafarpour

respectively report only a lower critical density, below which the system is in the free-flow
phase.

3.3. Hydrodynamic limit for finite densities

The link between the stationary state and the dynamics is established by the continuity equation
which relates the change in the local order parameters to the currents and other equations for
the dynamics of the various nonconserved internal degrees of freedom. In order to obtain
information about the dynamics on a coarse-grained scale one assumes local stationarity and
a sufficiently smooth behaviour of the local order parameter. For driven diffusive systems one
may then investigate the dynamics on the Euler scale, i.e., in the scaling limit where the lattice
spacing a and time scale τ are sent to 0 such that a/τ remains constant.

By expressing the correlation functions that enter the currents completely in terms of the
density one thus obtains a partial differential equation

∂

∂t
ρ = − ∂

∂x
j (ρ) (3.10)

for systems with one conservation law, and system of equations

∂

∂t
ρA = − ∂

∂x
jA(ρA, ρB) (3.11)

∂

∂t
ρB = − ∂

∂x
jB(ρA, ρB) (3.12)

for models with two conservation laws. Using the theory of partial differential equations this
yields coarse-grained information about the time evolution of the lattice model. The average
occupation of the local density is thus described in terms of a deterministic evolution of a
coarse-grained density profile.

From these introductory remarks it has become clear that knowing the stationary currents
exactly as functions of the density is crucial for calculating the density profile. A mean-field
approximation which neglects correlations between different lattice sites is bound to give
wrong quantitative results unless the stationary distribution happens to be characterized by
the absence of correlations. For systems with a single conservation law, mean-field
approximations may yield qualitatively correct behaviour if the mean-field current reproduces
local extrema and inflection points of the true current. However, we wish to stress that even
short-ranged correlations resulting from Ising-type stationary distributions (2.12) may lead
to qualitatively wrong behaviour of the current–density relation. An example is the KLS
model (2.11) where the exact current has a local minimum between two symmetric maxima
[7, 146] whereas the mean-field approximation yields the current–density relation (1.4) of the
ASEP with a single maximum. Hence neglecting short-ranged correlations may yield not only
quantitatively but even qualitatively wrong predictions for the most basic dynamical properties
of the system, namely the stationary current and the coarse-grained time evolution of the density
profile. To conclude, one needs to know which generic features of a current–density relation
determine the qualitative behaviour of the solution of the hydrodynamic equation and it must
be verified that a mean-field approximation reproduces those features. Otherwise a mean-field
treatment of the continuity equation yields no information about the dynamics of the system.
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Figure 4. Time evolution of the ASEP on the Euler scale, starting from time t = 0 (a) with
an unstable shock and a region of positive slope. Any region of positive slope evolves into a
shock after some time (b) because of the flow of localized perturbations (microscopic picture) or
characteristics respectively (macroscopic description). The evolution of the unstable shock is not
uniquely defined by the viscosity-free hydrodynamics. Both evolutions (b) and (c) are solutions of
the inviscid Burgers equation for initial state (a). The physical solution selected by the spatially
homogeneous ASEP is shown in (b). The time evolution shown in (c) corresponds to the ASEP
with a defect which is governed by the same homogeneous Burgers equation [149].

In some cases approximating an unknown measure by an Ising measure (2.12), (3.4) with
short-ranged correlations rather than by a simple product measure (simple mean field) without
correlations may bring improvement. In the literature this improved kind of approximation
scheme is sometimes called cluster approximation. In the following, we assume that at least
the stationary current (if not the full measure) is known exactly.

Nonlinear equations of the form (3.10), (3.11) are known to possess singularities which
do not allow for a unique solution of the initial value problem. Almost all initial configurations
will develop shock discontinuities where the density jumps from one value to another even
if the initial state was smooth. This raises the question of the microscopic properties of the
macroscopic solution. Moreover, ambiguities exist even if the original particle problem has a
unique stationary state into which the system evolves for all initial states. Thus one is faced
with the second problem of selecting the physical solution of the hydrodynamic equation
(figure 4).

For a class of systems with one conservation law the transition from the stochastic lattice
dynamics to the hydrodynamic equation (3.10) is mathematically well understood [147] and
includes also the treatment of shock discontinuities, for a broader overview see [1]. Here we
give a more physics oriented account inspired by the desire to derive macroscopic phenomena
such as shocks from microscopic behaviour, namely the flow of localized (microscopically)
perturbations inside a stationary region. It has turned out that such an approach, originally
developed for systems with one conserved density and no internal degrees of freedom, also
works for two-species problems, if suitably generalized.

To keep the discussion simple we restrict the review to a system with a convex current–
density relation such as found in the ASEP (1.4). In the hydrodynamic limit (3.10) one obtains
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for the ASEP the well-known inviscid Burgers equation [148]

∂

∂t
ρ = − ∂

∂x
(Dr − Dl)ρ(1 − ρ) = −(Dr − Dl)(1 − 2ρ)

∂

∂x
ρ. (3.13)

It is well known that an upward shock in the ASEP constitutes a stable shock whereas the
downward shock dissolves into a rarefaction wave. This result can be obtained by using the
method of characteristics which traces the motion in spacetime of points of constant density.
One introduces a scaling variable u = x/t to obtain from (3.13)

u = (Dr − Dl)(1 − 2ρ). (3.14)

This is a weak solution for an initial profile with a down-shock at x = 0 (figure 4).
This solution may be obtained in a different way by starting from the lattice continuity

equation (1.2) with current

jk = (Dr − Dl)ρk(1 − ρk+1) (3.15)

obtained from (1.3) by neglecting correlations at all times. The picture underlying this
approximation is the assumption of local stationarity where all correlations are sufficiently
small. With a Taylor expansion in the lattice constant a → 0 one arrives at the Burgers
equation

∂

∂t
ρ = − ∂

∂x
(Dr − Dl)ρ(1 − ρ) + ν

∂2

∂x2
ρ (3.16)

with an infinitesimal viscosity ν ∝ a. The Burgers equation is integrable using the Hopf–Cole
transformation ρ = κ∂x ln w. This leads to a standard linear diffusion equation for w which
has a unique solution for any initial profile. Taking the limit a → 0 in the solution one recovers
the physical solutions described above (shock and rarefaction waves) which are realized by
the ASEP.

In a different, but for one-species models equivalent, approach for selecting the physical
solution one defines an entropy function associated with the conservation law (3.10).
The entropy solution yields the physical solution corresponding to the ASEP, for a review,
see [1]. With this approach one may also consider the ASEP with a localized defect [149]
which has a different solution for a downward shock and which also produces a shock inside
a domain with constant density [150].

In order to obtain a physical microscopic picture of how these solutions emerge on
a macroscopic scale, we study the dynamics of localized perturbations in a homogeneous
stationary environment [4]. The time evolution of such a perturbation on the lattice scale can
be probed by examining the dynamical structure function

S(k, t) = 〈nk(t)n0(0)〉 − ρ2 (3.17)

which measures the density relaxation of a local perturbation in the stationary state of uniform
density ρ. Generally, the width of such a perturbation at t = 0 is of the order of the bulk
correlation length. The centre-of-mass velocity of the perturbation is given by the collective
velocity

vc = ∂

∂ρ
j (ρ). (3.18)

One may derive this relation from the shock velocity

vs = j1 − j2

ρ1 − ρ2
(3.19)

by taking the limit ρ1 → ρ2 of the asymptotic densities of the shock. Note that vc changes
sign at local extrema of the current–density relation. We stress that expression (3.19) follows
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from mass conservation and hence no specific assumptions on the nature of the microscopic
dynamics are involved. Hence also (3.18) is expected to be generally valid. The only
assumption is sufficiently rapidly decaying bulk correlations in the steady state as otherwise
the microscopic definition of a shock position becomes questionable, since the shock position
cannot be defined on a scale below the bulk correlation length. A direct derivation of
(3.18) from the dynamical structure function which uses only translational invariance, the
conservation law and decay of correlations is outlined in [4].

The shock velocity for the ASEP follows from (1.4), (3.19) and one finds

vs = (Dr − Dl)(1 − ρ1 − ρ2). (3.20)

This yields the collective velocity

vc = (Dr − Dl)(1 − 2ρ). (3.21)

The origin of the physical solution of the macroscopic time evolution can now be explained
from a microscopic viewpoint by imagining that by a small fluctuation a certain amount of
mass detaches from the shock and forms a perturbation at a small distance from the shock
position. On average this fluctuation will then travel with speed (3.21) where ρ is to be taken
as either ρ1 or ρ2, depending on whether the fluctuation had originally moved to the left or
right of the shock. Equation (3.21) shows in the case of an upward shock that for all shock
densities ρ1,2

v(1)
c > vs > v(2)

c . (3.22)

Hence in the moving reference frame of the shock the excess mass drifts back to the position
of the shock and hence stabilizes it.

On the other hand, in the case of an initial downward shock the fluctuating excess mass
moves on average away from the shock. Therefore this shock is not stable against fluctuations,
in the course of time the shock smears out and develops into a rarefaction wave. In order
to predict the macroscopic shape of the rarefaction wave, we assume an initial configuration
with a shock with densities ρ1 and ρ2 which is composed of many infinitesimal subsequent
shocks at various levels of intermediate densities (figure 3). Neither of these shocks is
stable, but each slowly dissolving shock at density ρ moves with a speed vc. Hence we
conclude that on the Euler scale (where the spread of a perturbation (2.6) and hence the
increasing width of the unstable shock is scaled to zero) points of constant density ρ generally
move with speed vc. From this observation the explicit form of the rarefaction wave can be
constructed.

Clearly, this is not a rigorous argument. Support for this picture comes from the
hydrodynamic limit. The collective velocity is then nothing but the speed of the characteristics
of the corresponding hydrodynamical equation ∂tρ = −∂xj resulting from the continuum
limit of the lattice continuity equation (1.2). In this limit, the criterion (3.22) becomes the
defining property of a shock discontinuity [151]. It asserts that the characteristics are moving
into the shock. Otherwise, the characteristics yield the rarefaction wave, as rationalized
above. For current–density relations which are not globally convex one decomposes a single
shock into subsequent small shocks and then applies (3.22) to these minishocks in order to
decide on stability. By taking the limit of infinitesimal shocks one recovers in this way the
scaling solution of the hydrodynamical equation obtained from the method of characteristics
[7, 152].

For systems (3.11) with two or more conservation laws there is no well-established
mathematical theory for the selection of the physical solution in the corresponding lattice
gas. In recent work [32] Tóth and Valkó have obtained rigorous results by making use
of Yau’s relative entropy method [153] which essentially proves that a product measure



Topical Review R359

with time-dependent local densities evolving according to the solution of the hydrodynamic
equation converges to the true measure in the sense of relative entropy of the two measures.
This approach works for systems with a stationary product measure until a shock has
formed, provided some particular identities hold which relate the macroscopic fluxes in the
hydrodynamic PDE. These identities are reminiscent of the Onsager reciprocity relations.
The systems studied in [32] are models with generically more states than conservation
laws. They include a family of two-species ASEPs with parameters satisfying relation (3.5)
guaranteeing the existence of a stationary product measure and which have a natural
interpretation as growth models. A two-species zero-range process has been studied by
Grosskinsky and the corresponding hydrodynamic equations have been established [154].

The rigorous approach of [32] is rather powerful but in its current state fails as soon as
shocks develop. On the other hand, shock waves and special rarefaction waves have been
analysed nonrigorously from a microscopic viewpoint by studying the flow of perturbations
and correspondingly extending the physical arguments presented above to two-species systems
[155]. One has to study two perturbations in each conserved density which due to the
interaction are forced to move with the same velocity. Generalizing the analysis of the
dynamic structure function to two conservation laws one finds that the main difference in
the case of one conservation law is the evolution of two distinct pairs of perturbations out of
a single pair. Each pair moves with collective velocities v±

c given by the eigenvalues of the
Jacobian

D =




∂

∂ρA
jA ∂

∂ρB
jA

∂

∂ρA
jB ∂

∂ρB
jB


 . (3.23)

Corresponding to the two pairs of perturbations a single shock splits into two separate
shocks, leaving the system in stationary regimes of three distinct densities, namely the left
and right shock densities ρ

A,B
1,2 enforced by the initial state and self-organized intermediate

shock densities ρ̃A,B . The equality of each pair of shock velocities (given by the general
expression (3.19) applied to each single shock) and the requirement that the velocity of the left
shock vL

s must be smaller than the velocity vR
s of the right shock determine the intermediate

densities ρ̃A,B . Requiring that all perturbations be absorbed in the shock one arrives at the
condition

v±
c (ρ1) > vL

s > v−
c (ρ̃) v+

c (ρ̃) > vR
s > v±

c (ρ2) (3.24)

for shock stability in driven diffusive systems with two conservation laws. Violating one of
these conditions leads to rarefaction waves which have partially been described [155]. The
general features discussed here are confirmed by Monte Carlo simulation of a two-lane model
with a conserved density on each lane related to the models of [30, 31], but with periodic
boundary conditions and different choice of hopping rates respectively. A complete description
of the evolution for all possible initial states has not yet been achieved.

4. Critical phenomena

It is well known that in thermal equilibrium one-dimensional systems with finite local state
space and short-range interactions do not exhibit phase transitions at positive temperatures,
only at T = 0 may long-range order exist. From a dynamical viewpoint there are no thermal
fluctuations at T = 0 in a classical system. In terms of a stochastic process it means that
all transition rates are zero. Conversely, if a transition rate is non-zero, some dynamics—not
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necessarily satisfying detailed balance—is going on and it has been conjectured that quite
generally a system with strictly positive transition rates and local interactions can have at most
one stationary distribution, which is often rephrased by saying that there can be no phase
transition in a one-dimensional system with strictly positive rates. One has in mind an infinite
system since in a finite system dynamics with strictly positive rates are always ergodic and the
conjecture is trivially true.

To rationalize the conjecture one imagines, in the simplest case, two potentially stationary
distributions characterized by different values of the order parameter. An example is the Ising
model where the order parameter is the magnetization, which can take two different values
below the critical temperature in two or higher dimensions. The reasoning behind the positive
rate conjecture is the difficulty of imagining a local mechanism that eliminates islands of the
minority phase (created constantly by thermal fluctuations in a region where the other phase
dominates) since in one dimension energetic effects due to line tension play no role. A local
mechanism cannot detect the size of a minority island, therefore such an island can grow
indefinitely and destroy the majority phase. Since noise (implied by strictly positive rates) can
always create such islands there seems to be no possibility of keeping the majority phase stable
against fluctuations. In a certain ‘natural’ class of systems with nearest neighbour interaction
this conjecture has been proved rigorously some time ago [156].

Therefore it came as a surprise that Gacs constructed a model on the infinite lattice which
violates the positive rate conjecture [157, 158]. However, both the model and the proof that
there is a phase transition are rather complicated [159], requiring either a very large local state
space or a very large interaction range, and the quest for simple models with this property
continues to stimulate research. As a guideline, we note that the conjecture is clearly true
for dynamics satisfying detailed balance with respect to a local interaction energy as in this
case the stationary distribution is just the usual equilibrium distribution and the argument
underlying the positive rate conjecture applies. Hence one should look for models that either
violate detailed balance or have a nonlocal interaction energy, but local dynamics.

We address the question of phase transitions in a broader sense by asking whether
phenomena associated with phase transitions such as divergent length scales or spontaneous
symmetry breaking may occur far from equilibrium. Divergence of some correlation length
does not necessarily require the existence of more than one stationary distribution for a given
set of system parameters. On the other hand, one could have a parameter range with two or
more stationary distributions which are not related by any symmetry, but the transition into
this regime would be associated with a divergent length scale.

We restrict ourselves to driven diffusive systems with one or two conservation laws, thus
skirting the issue of phase transitions in nonconservative models, addressed in [103, 160, 161],
and also avoiding systems kept out of equilibrium without having a current in the conserved
density. This could be achieved, e.g., by coupling symmetric hopping dynamics to heat baths
of different temperatures, a scenario not envisaged in the context of driven diffusive systems.
Also nonconservative processes with absorbing states such as the contact process [3, 14, 15]
fall in the class of systems not considered here. We refer to models of this type only where it
serves to illuminate the properties of closely related driven systems.

By definition, conservative systems have a continuum of stationary states (characterized
by the value of the order parameter) and hence the critical phenomena we review concern
transitions between different stationary distributions at the same value of the order parameter
and coexistence of macroscopic stationary domains where the order parameter takes different
values. The domain walls separating these domains are the shocks discussed in the previous
section. Hence the stability of domain walls is intimately connected with the existence of
phase separation.
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4.1. One conservation law

In a system with a conserved density the positive rate conjecture does not apply by definition,
as transitions violating density conservation have zero rate. Hence there seems to be no reason
to pursue the question of existence of phase transitions in conservative systems. Moreover,
the discussion of shock stability presented above shows that a stable domain wall separating
regions of different values of the order parameter may exist, thus actually suggesting the
possibility of phase coexistence and long-range order. However, by the same reasoning it is
clear that in a system with a generic current–density relation one cannot have two domain
walls which would be necessary to have macroscopic phase separation in a translation-invariant
system: if, say, an upward shock from density ρ1 to density ρ2 at the left boundary of the
region of higher density ρ2 is stable by the criterion (3.22), then the downward shock ρ2

to ρ1 at the other boundary of the region of higher density would be unstable by virtue of
the same criterion. Thus one is forced to conclude that phase coexistence in a system with
one conservation law may exist only in the absence of translation invariance. This is indeed
known in systems with open boundaries where external particle reservoirs enforce regions
of constant boundary densities ρ1,2, separated by a single stable domain wall [19, 20, 59].
Similarly in a periodic, but not translation-invariant system with a defect one may have phase
separation since in this set-up the defect may stabilize the intrinsically unstable shock. Hence,
stability of a shock in a system with one conservation law does not constitute a violation
of the zero-rate conjecture for a translation-invariant system. Indeed, it has been suggested
that one-dimensional driven diffusive systems do not exhibit long-range order in their steady
states [83].

Yet, several translation-invariant models with one conservation law and short-range
interactions which exhibit a robust phase transition were discovered. A simple, but non-generic
example is a growth model (which can be mapped to a driven diffusive system according to
the strategy explained in section 2) where a roughening transition from a phase with a smooth
interface to a phase with a rough interface occurs [162, 163]. This class of models is
non-generic in so far as there is an intrinsic maximal growth velocity of the interface, enforced
by a discrete-time parallel update. The smooth phase and hence the phase transition disappears
if the limit of continuous time is taken in these models.

Addressing the possibility of a roughening transition in systems with continuous time
evolution Alon et al [164, 165] proposed a two-species ASEP with rates

DA0 = D0B = (1 − q)/2 D0A = DB0 = DBA = q (4.1)

and annihilation/creation rates

D00 = DBA = q DAB = 1 − q (4.2)

for the transitions 00 ↔ AB and BA → 00 respectively. These dynamics lead to a single
conserved ‘density’ S = NA − NB . In the mapping to a growth model A (B) represent a local
slope 1 (−1) and 0 represents slope 0. In order to ensure periodic boundary conditions also
in the interface representation the model has been studied for S = 0. For small q < qc there
is a smooth phase where a local mechanism eliminates islands in a flat region, since islands
are formed with boundaries that are biased to move towards each other. This mechanism
applies for islands of all sizes (except completed layers) and hence leads to a smooth interface,
consisting mainly of vacancies in the lattice gas picture. Above qc ≈ 0.189 the creation of
new islands overcompensates the disappearance due to their intrinsic tendency to shrink and
the system is in a growing rough phase with a finite fraction of particles. The growth model
is in the universality class of the KPZ equation which is represented by the standard ASEP.
The critical behaviour at qc which is related to directed percolation is discussed in detail in
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[164, 165] where also a version of the model without constraint on the local slope
(corresponding to the absence of exclusion in lattice gas language) is discussed. There is
spontaneous symmetry breaking in the smooth phase which can be quantified by introducing
either a colouring scheme, giving vacancy clusters between A,B pairs a colour, or by
introducing a nonconserved order parameter M that makes use of the interface representation.
The critical exponent θ associated with the vanishing of the order parameter by approaching
the critical point from below,

〈|M|〉 ∼ (qc − q)θ (4.3)

is a new exponent, not yet understood in the framework of directed percolation.
For this transition to exist it is crucial that no chipping of particles from the interface in

a locally flat environment may occur. This is ensured by imposing a kinetic constraint on the
local dynamics, namely setting the rate D̃00 for the process 00 → BA to zero. However, this
process does not violate the single conservation law. Hence this model does not provide a
counterexample against the zero-rate conjecture, as applied to systems with one conservation
law. By regarding the various local transitions of this strongly nonequilibrium process as
induced by thermal activation from heat baths at different temperatures, one is led to conclude
that the local mechanism that guarantees bounded growth of regions of the minority phase is
achieved at the cost of requiring a zero-temperature condition on the chipping process.

In the presence of chipping with a rate D̃00 = p the interface attains a negative stationary
growth velocity for some value of q that depends on p. An interesting phenomenon then occurs
if the dynamics of the interface is constrained by the minimal height condition that hi � 0
for all times and all lattice points i [166]. For negative growth velocity, the interface is driven
towards the hard wall located at the height level hi = 0 which the interface cannot penetrate.
In the special case of p = 1 − q > 1

2 the model satisfies detailed balance with respect to
the energy

E =
L∑

i=1

hi (4.4)

which is the area under the interface. The stationary probability of finding an interface
configuration h = (h1, . . . , hL) is given by

P(h) = (q/(1 − q))E(h)/ZL (4.5)

with the partition function ZL = �config(q/(1 − q))E . At q = 1
2 the interface has mean

velocity zero, for q > 1
2 the interface grows. Hence expression (4.5) diverges in time and

becomes meaningless as a stationary distribution for q � 1
2 . In the growth regime the interface

roughens, with dynamical behaviour in the ubiquitous KPZ universality class. For q < 1
2 the

interface is bound to the hard wall and hence is smooth. Close to the transition point exact
analysis of the partition function yields an occupation density σ of the bottom layer h = 0
and a width w diverging as [166]

σ ∼ (qc − q)1 w ∼ (qc − q)1/3. (4.6)

The unbinding of the interface at qc = 1
2 is analogous to a wetting transition. We remark

that this model has a zero-rate constraint by not allowing the interface to penetrate the bottom
layer.

The physics described by these two models can be captured in a generalized KLS model
(2.11). In this model spontaneous symmetry breaking due to the absence of chipping and
conservation of minimal height with the resulting wetting transition can be studied without
reference to the height variable.
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Koduvely and Dhar considered the symmetric KLS model with rates DXY := DXY
r =

DXY
l for the hopping event XA0Y ↔ X0AY [167]. The analogue of the chipping rate

in the two-species model is the hopping rate DA0. Setting DA0 = 0 automatically leads
to conservation of minimal height or, more precisely, conservation of the height level of a
completed layer. It is not necessary to stop the dynamics by a separate rule involving the local
height. In contrast to the previous model of Hinrichsen et al, however, the interface always
remains anchored to the minimal height level at some random position. Hence the properties
of the wetting (unbinding) transition are described by this model only below the critical point
in the dry (bound) state.

Careful numerical analysis of the symmetric model [167] indicates subdiffusive critical
dynamics of the unbiased interface with a dynamical exponent z ≈ 2.5, as opposed to the
usual dynamical exponent z = 2 of the unbiased Edwards–Wilkinson interface modelled by
the symmetric KLS model for any DA0 > 0. The physics of the biased interface was studied
by Helbing et al [168] by considering asymmetric rates

DAY
r = r D0Y

r = q D0Y
l = p DAY

l = 0. (4.7)

with p = 1 − q − r . For r = 0, the system satisfies detailed balance with respect to the
measure (4.5). Below the wetting transition q < 1

2 one has the exact exponents (4.5). At the
critical point the interface is rough and one expects a dynamical critical exponent as measured
in the related model of Koduvely and Dhar. Above the critical point the interface would grow,
but cannot detach from the minimal height level due to anchoring. Hence the measure (4.5)
is stationary for all q. The stationary interface has a cusp, the anchoring point is random.
This is an example of spontaneous breaking of translational invariance. In the particle picture
the steady state is a shock measure with extremal limiting densities ρ1 = ε, ρ2 = 1 − ε

with a sharp downward shock at some random lattice site k. In a finite system, the small
quantity ε and hence the particle current are exponentially small in system size L. The random
anchoring point k moves with a speed also exponentially small in system size. This structure
describes a strongly phase-separated state with an essentially empty region and an essentially
full region. For this to be valid it is not necessary to require a total average density ρ = 1

2 .
It is easy to understand this steady state directly from the microscopic dynamics. The right
edge of the occupied domain, i.e. the right-hand shock, is stable because a hopping of the
rightmost particle is exceedingly unlikely since the transition AA0 → A0A is forbidden and
the configuration 0A0 where hopping is allowed is exceedingly unlikely for the rightmost
particle (exponentially small in system size). On the other hand, at the left boundary of the
domain the system essentially behaves like an ordinary ASEP which has a stable upward shock
in the direction of motion.

For r > 0 the interface is not anchored anymore, but the minimal height condition for any
completed layer is still conserved. Along the line r = q one observes a transition from a rough
growing interface (finite particle current j > 0 for q > qc ≈ 0.1515) with KPZ dynamics
to a smooth interface with spontaneously broken symmetry. The symmetry breaking can be
quantified in terms of the nonconserved order parameter

M̃ =
∑

k

(−1)knk. (4.8)

This quantity measures the difference of sublattice densities between the even and odd
sublattice respectively. In the language of spin systems this is the staggered magnetization,
playing the role of the order parameter for antiferromagnetic systems. Below the critical point,
particles accumulate either on the even or on the odd sublattice respectively. Both happen with
equal probability, but a transition between both kinds of configurations occurs on a time scale
that diverges exponentially in system size. This is the signature of spontaneous symmetry
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breaking in a finite system. An explicit calculation of the exponentially large transition time
is possible in the vicinity of the line q = 0 [169]. No reference to the height variable is
necessary for measuring M̃ . Numerical investigation of the model shows that it is in the same
universality class as the growth model of Alon et al [168].

In neither of the models discussed above is the positive rate condition satisfied. Only
kinetic constraints imposed by vanishing rates, analogous to the zero-temperature condition
on phase transitions in equilibrium, may lead to a vanishing current in which case the stability
argument for domain walls does not apply and phase transitions can occur. Below we shall
present an independent argument that suggests conditions under which kinetic constraints lead
to phase separation. Hence so far there is no known simple model with a single conservation
law that violates the positive rate conjecture.

4.2. Phase separation in two-species ASEPs

The exact and numerical analysis of steady states of one-species systems reviewed above has
revealed that phase separation in systems defined on a finite ring or on Z may occur if one or
more of the following conditions are satisfied:

(I) There are spatially localized defects reducing the mobility of particles.
(II) Single particles of a different species act as mobile blockages.

(III) The dynamics have kinetic constraints arising from a nonequilibrium zero-temperature
condition.

The last condition leads to strong phase separation in the sense that one domain is fully
occupied whereas the other domain is entirely empty. The current in the phase-separated state
vanishes exponentially in the size of the particle domain, the separated state exists at any total
particle density. Conditions (I) and (II) may lead to strong phase separation, but allow also
for a soft phase separation between domains of different densities. This phenomenon sets in
only for densities above some critical density ρc. The steady-state current is nonvanishing and
independent of ρ in the phase-separated state: increasing the density leads to an increase in the
size of the high-density domain, but not to a change of the current. In analogy to Bose–Einstein
condensation we call the high-density domain a condensate, the transition at ρc is referred
to as condensation transition. Note that this characterization refers to the thermodynamic
limit L → ∞. In a finite system there is either a current exponentially small in system size
(case A, strong phase separation) or one has finite-size corrections to the finite bulk current
(case B, soft phase separation). We remind the reader that soft phase separation may disappear
above a critical density ρ̃c and also for a finite density of blocking particles [95]. Strong
phase separation is accompanied by spontaneous breaking of translational invariance, except
if caused by condition (I) where translational invariance is explicitly broken (figure 5).

Strong phase separation has been found also in homogeneous systems on a ring where
none of conditions (I)–(III) is satisfied, but where there is a second species of particles with
finite density [30, 143, 170]. Hence we add a further sufficient condition for the possibility of
phase separation:

(IV) The system has two or more conservation laws.

We remark that all conditions (I)–(IV) in some way or the other impose local constraints on
the dynamics of the driven diffusive system. This appears to be a general requirement for
phase separation in generic driven diffusive systems. The size of the local state space and the
range of interaction appear to be irrelevant if one of conditions (I)–(IV) is satisfied.

Using a four-state model which is equivalent to a two-lane model with two conserved
densities Lahiri and Ramaswamy [30, 171] address the question of phase separation in terms
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Figure 5. Schematic phase diagram with second-order phase transition line (broken curve) between
the disordered phase (A) (growing KPZ interface) and ordered phase (smooth interface) (B) with
spontaneously broken Z2-symmetry and nonvanishing order parameter M̃ (4.8). At r = 0, there
is a transition at q = 1

2 with strong phase separation and spontaneous breaking of translational
invariance (bold line C).

of the stability of crystals moving steadily through a dissipative medium, e.g., a sedimenting
colloidal crystal. In a certain limit (large particle radius or small elastic modulus of the
suspension) experiments suggest instability of such a crystal. Numerical analysis of the
lattice model, however, reveals a transition to a stable regime, corresponding to strong phase
separation. In the simpler two-species ASEP (3.9) or in a more symmetric model with rates
[170, 172]

DA0 = D0B = DBA = 1 D0A = DB0 = DAB = q (4.9)

the mechanism for strong phase separation for q < 1 is very transparent. Here strong
phase separation refers to separation of three pure macroscopic domains, each consisting of
essentially only one particle species or empty sites. For simplicity we assume NA = NB , but
this is not necessary for the phenomenon to occur. Prepare a phase-separated block which we
symbolically represent by . . . 000AAAAAABBBBBB000 . . . . One observes the following.
(i) The 0|A interface is stable by the criterion (3.22) since due to the absence of B-particles
one has the dynamics of the usual ASEP (with a bias to the right) in the vicinity of this domain
wall. (ii) The B|0 interface is stable for exactly the same reason (B-particles have a bias to
the left). (iii) The A|B interface is stable since in the absence of vacancies B-particles act like
vacancies w.r.t. the local dynamics of the A-particles and vice versa. (iv) Since each domain
wall is stable (only small fluctuations extended over a finite range of lattice sites evolve at the
phase boundaries) the assumption used in the argument remains valid for all times.

It is clear that this model can be extended to an arbitrary number of conserved species
and does not require equal density for each particle species. However, for NA = NB = L/3
the dynamics can be shown to satisfy detailed balance w.r.t. an equilibrium measure with a
nonlocal interaction energy of Ising type [172]

E =
L−1∑
k=1

L∑
l=k

[(
1 − nA

k − nB
k

) (
nB

l − nA
l

)
+ nA

k nB
l

]
. (4.10)
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The corresponding partition is proportional to system size L, rather than ef L, since fluctuations
occur only in a finitely extended region around the three domain walls. The ‘temperature’
associated with equilibrium measure is given by kT = −1/(ln q). It diverges at q = 1 which
corresponds to the disordered state of symmetric diffusion of first- and second-class particles.
The analysis of the model for q > 1 is similar, with the role of A- and B-particles interchanged.
The behaviour of the model close to the transition point q = 1 has been investigated [173]
and some critical exponents have been determined numerically.

The related but distinct model (3.9) of Arndt et al has strong phase separation for q < 1,
with essentially nonfluctuating 0|A and B|0 domain walls and an A|B-interface similar to
that in model (4.9). For q > 1 the behaviour of the model is more intricate. Numerical
and mean-field analysis [174] suggests the existence of soft phase separation up to a critical
value qc = 1 + 4λρ/(1 + 2ρ). There is a condensate of density 1, but consisting of both
species of particles. The other ‘fluid’ phase has density <1, with particles of both species
and vacancies distributed apparently similarly to the disordered phase for q > qc. Note
that inside the condensate particles also flow, but with the dynamics of the usual ASEP, as the
B-particles act like vacancies in the usual ASEP. The number of A- and B-particles is on average
equal and the condensate essentially behaves like the usual ASEP with open boundaries in
the maximal current phase, except that the system size M of this ASEP corresponds to the
slightly fluctuating cluster size. The stationary current for both particle species is non-zero
and approximately given by the value J = (q − 1)/4 expected from the ASEP in the maximal
current phase. The position of the condensate fluctuates on the lattice. For an unequal average
density of A- and B-particles, the scenario as described here remains essentially unchanged,
except that the condensate has a finite drift velocity [175].

The exact stationary distribution of the model (3.9) can be calculated using the matrix
product ansatz. For the grand-canonical ensemble with equal densities of both particle species
it has been shown [176] that the apparent condensation transition is a crossover effect.
For sufficiently large lattice one would observe a distribution of clusters, but not a single
macroscopic condensate. Using the parameter a = (1 − q−1 − λ)/λ and the fugacity ξ

controlling the density the exact current J and the density ρ are given by

J (ξ) = 2a2ξ

1 + a2 + 2a(1 + a2)ξ − (1 − a2)
√

1 + 4aξ
(4.11)

ρ(ξ) = a(1 + a)ξ [(1 + a)
√

1 + 4aξ − (1 − a)]√
1 + 4aξ [1 + a2 + 2a(1 + a2)ξ − (1 − a2)

√
1 + 4aξ ]

. (4.12)

This expression has a very remarkable property: inside the apparently condensed phase at
q = −a = 10

9 the derivative J ′(ρ) which enters the Jacobian (3.23) and hence determines the
collective velocities of the two-species system has a change of order 1 arising from a change
of order 10−24. One would need a lattice of the order of 1070 sites to actually observe the
breakdown of the condensation and see the full distribution of clusters of various lengths.

Clearly, a crossover scale of this magnitude is of no relevance for the occurrence of soft
phase separation in a real system. Any finite sample would exhibit a phase-separated state.
However, the huge number 1070 characterizing the typical scale of the cluster size distribution
is specific for the model (3.9). As shown in [177] the crossover scale depends sensitively
on non-universal parameters which are tunable in some models [178]. Hence other models
may have parameter ranges with mean cluster sizes of the order, say, 105. Such a crossover
scale would render numerical results from computer simulations of the steady state for a real
quasi-one-dimensional system ambiguous: a computer simulation of a realistic model for a
real system with less than 105 particles could predict soft phase separation, whereas actual
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experiments done on a macroscopic sample with more than 105 particles could yield the
contradictory result that there is only a disordered phase. Yet, one could not conclude from
this observation that the model is inappropriate to describe the real system since in a smaller
experimental sample of the same system computer simulations and experimental observations
may agree.

We remark that a technical assumption in the exact calculation of Rajewsky et al [176]
has been proved in [179]. The validity of the result also in the canonical ensemble has
been challenged [175], even though exact analysis of the fluctuations in the particle density
strongly suggests that there is no true condensation in the canonical ensemble [176]. In another
model introduced by Korniss et al a two-lane extension of a three-species driven system was
studied [180, 181]. It has been suggested that while for this model the one-lane system does
not exhibit phase separation [182], this phenomenon does exist in the two-lane model. The
studies rely on numerical simulations of systems of length up to 104. However, no theoretical
insight is available as to why phase separation in this two-lane model should persist in the
thermodynamic limit.

To conclude these general considerations we note that in many real quasi-one-dimensional
systems the particle number is in the range 10–104. Simplified models of such systems are
accessible to numerical simulations of the steady state. This raises the further question to
what extent phase separation in finite systems is obscured by a too large intrinsic width of the
domain wall separating the condensed domain from the ‘fluid’ low-density domain. While
quantitative predictions for the relaxation modes resulting from the coarse-grained domain
wall theory in single-species systems with open boundaries have been verified numerically for
the ASEP on small lattices of only O(10) sites [183] there is no systematic finite-size study of
soft phase separation.

4.3. Criterion for phase separation

In view of the exact analysis of the model (3.9) it is clear that numerical evidence for soft
phase separation may be rather subtle and indeed be misleading. It would thus be of great
importance to find other criteria, which could distinguish between models supporting phase
separation from those which do not. Phase separation is usually accompanied by a coarsening
process in which small domains of, say, the high-density phase coalesce, eventually leading
to macroscopic phase separation. This process takes place as domains exchange particles
through their currents. When smaller domains exchange particles with the environment with
faster rates than larger domains, a coarsening process is expected, which may lead to phase
separation.

An approach that quantifies this mechanism and yields a criterion for phase separation in
terms of the current leaving the domains is proposed by Kafri et al [184]. The current criterion
is readily applicable even in cases which cannot be decided by direct numerical simulations.
In order to explicitly state the criterion one distinguishes systems with a vanishing current
inside a finite domain of size n

Jn → 0 (case A) (4.13)

from systems with finite-size corrections to a finite asymptotic domain current J∞ of the form

Jn = J∞(1 + b/nσ ) (case B). (4.14)

to leading order in 1/n. For simplicity, we assume here domains with vanishing drift velocity
in which case the current inside the domains equals the outgoing current. More generally, one
has to distinguish the two currents leaving the cluster at the right and left boundary respectively.
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For b > 0 the current of long domains is smaller than that of short ones, which leads to a
tendency of the longer domains to grow at the expense of smaller ones. The current criterion
asserts that phase separation exists only in the following cases [184],

Jn → 0 for n → ∞ (case A) (4.15)

Jn → J∞ > 0 (case B) (4.16)

for either σ < 1 and b > 0 or σ = 1 and b > 2. In case A one has strong phase separation
for any density, whereas in case B one has soft phase separation at any density for σ < 1 and
above a critical density

ρc = 1

b − 2
(4.17)

for σ = 1. The fluid regime has particles with density ρc. Hence in a finite system the
macroscopic size of the condensate in the phase-separated regime is determined by the system
parameter b. For an asymptotic decay faster than 2/n there is no condensed phase, the system
is disordered for all densities.

Models with two conservation laws for which Jn decays exponentially to zero with n
(case A) have been reviewed above and indeed were shown to exhibit strong phase separation
at any density. In the model (4.7) with a single conservation law the current of particles
out of the left domain wall, i.e., the current opposite to the bias of the individual particles,
decays exponentially with domain size for r = 0, as demonstrated for the usual ASEP with
appropriately chosen open boundary conditions [185]. The domain size dependence of the
current flowing away from the right edge of a cluster (in the direction of the bias) is to leading
order not a self-organized quantity, it is determined strongly by the interaction of the particle
at the edge of the cluster with the surrounding particles. The interaction range is one lattice
site and hence the current Jn out of the right edge of a cluster of density 1 becomes to leading
order independent of the cluster size for n > 2. It vanishes due to the kinetic constraint r = 0
(zero-temperature condition). According to the criterion one expects strong phase separation,
in agreement with the result reviewed above.

For J∞ = 0 (case B) we note that in a system with two conservation laws the current
inside a cluster organizes itself to a value determined by the dynamics of the reduced system
with only one conservation law resulting from the absence of vacancies. This reduced system
has open boundaries with inflow and outflow of particles such that the system is in the generic
maximal current phase of the reduced system. It is assumed that the current flowing through
a block is given by its steady-state value and is independent of its neighbouring blocks. This
may be justified by the fact that the coarsening time of large domains is very long, and the
domains have a chance to equilibrate long before they coarsen.

In case B one expects generically σ = 1 for the following reason. (a) In a periodic
system the leading finite-size corrections to the current J∞ in a canonical ensemble are given
by Jn − J∞ = −J ′′

∞κ/(2n) [178, 186]. Here J ′′
∞ is the curvature of the current–density

relation and κ = (〈N2〉 − 〈N〉2)/L is the nonequilibrium analogue of the thermodynamic
compressibility which is assumed to be finite, i.e., one assumes sufficiently rapidly decaying
correlations as was implied above in the derivation of the collective velocity which also
requires finite compressibility. (b) There is a universal ratio c∗ of the finite-size corrections
to the current in the maximal current phase of a driven diffusive system (which describes
the dynamics inside the growing domains) and the finite-size corrections of the canonical
ensemble of a periodic system [187]. This yields leading finite-size corrections of the form
(4.13) with a parameter b entirely determined by the universal constant c∗ and the macroscopic
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quantities J ′′
∞ and κ . The value of c∗ = 3

2 has been obtained from the exact solution of the
ASEP with open boundaries [19, 20].

We stress that by definition b is a quantity that itself does not depend on system size. For
systems with unknown stationary distribution, the reduced dynamics inside a cluster allows for
a simple numerical measurement of b by studying the finite-size corrections of the stationary
current in the reduced open system of length n. One neither needs huge lattices nor is one
faced with the problem of slow relaxation of the phase separation process in the full system.
Applying the criterion to the model (3.14) yields the exact value b = 3

2 and hence one expects
no condensation, in agreement with the exact result. For the two-lane model of Korniss et al
[180] one obtains numerically b ≈ 0.8 [184] and therefore one expects no condensation in
contrast to the results of the Monte Carlo simulation of the full model with 104 lattice sites. A
three-state model with KLS dynamics (2.11) inside the clusters has been shown to have b > 2
[178] which suggests the existence of soft phase separation in driven diffusive systems with
two conservation laws.

The criterion presented above emerges from a careful analysis of the zero-range process
(ZRP) which could be viewed as a generic model for domain dynamics in one dimension
[184].

Depending on the rates wn the model may or may not exhibit condensation in
the thermodynamic limit, whereby the occupation number of one of the boxes becomes
macroscopically large. Clearly, the rate wn must be a decreasing function of n in order for
larger blocks to be favoured and to support condensation. It is known [8, 106] that condensation
occurs at any density when wn → 0 with n → ∞, or when it decreases to a nonvanishing
asymptotic value as b/nσ with σ < 1; no phase separation takes place for σ > 1; for σ = 1
phase separation takes place at high densities only for b > 2. This model may be used to
gain physical insight into the dynamics of driven one-dimensional systems. Occupied boxes
represent domains of the high-density phase. The currents leaving domains are represented by
the rates of the ZRP. This is done by identifying the rate wn associated with a box containing
n balls with the currents Jn leaving a domain of n particles. A bias in the currents to a certain
direction may be incorporated through a bias in the ZRP dynamics. The existence of a box with
a macroscopic occupation in the ZRP corresponds to phase separation in the driven model.
The distribution of occupation numbers obtained from the ZRP was shown to agree with the
domain size distribution of the model (3.14) [184].

It is remarkable that extending the asymptotic expansion (4.14) by a (non-universal) next-
leading term c/n2 leads to an extremely sensitive dependence of the mean domain size ξ on
c [177]. The quantity ξ exhibits a sharp increase of a few orders of magnitude over a narrow
range of values of c. This reflects itself in large (but finite) blocks and an apparent phase
separation in direct simulations.

4.4. Coarsening

The previous discussion has focused on the stationary properties of phase separation. The
dynamics below the critical density are expected to be described on the hydrodynamic scale
by the mechanisms reviewed in section 3. Above the critical density a natural set-up is to
start with particles uniformly distributed at the supercritical density ρ > ρc. In the beginning
the excess particles condense at a few random sites. Thus there are several clusters which are
essentially immobile. On the remaining sites, the distribution relaxes to its critical stationary
distribution with ρ = ρc. With increasing time the larger clusters will gain particles at
the expense of the smaller ones, causing the clusters to merge. Eventually, only a single
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Figure 6. Coarsening of domains during phase separation. The regions between domains have
relaxed to their stationary critical density. Each domain of size nr has an outflowing current jr

determined by the dynamics inside the domain. In order to have domain growth the current should
decrease with domain size, as indicated in the figure for domains 1, 2, 3. Domain 2 is expected to
be eaten up by domains 1 and 3 after some time.

cluster containing all excess particles survives, which is typical for the stationary distribution
(figure 6).

In case A (strong phase separation) the evolution of this state will proceed by slow
diffusion against the bias, in which, for example an A-particle traverses the adjacent domain
of B-particles. Using standard mean first passage time calculations the time t necessary for
penetrating the complete B-domain of size n can be shown to be of order qn where q > 1 is
the hopping asymmetry, i.e., the ratio of hopping rates inside the B-domain. After that the
A-particle travels with finite average velocity to the edge of the next A-domain. This happens
after a time of order L which can be neglected compared to the penetration time. Therefore
the coarsening time is of the order qn and inverting this relation yields a logarithmic growth
law for the mean domain size in the strong phase separation [172],

n̄(t) ∼ ln t/ln q. (4.18)

This growth law is valid also in higher dimensions [188].
The zero-range picture may be used in order to study the coarsening dynamics of domains

in the case of soft phase separation. We set J∞ = 1 which only fixes an uninteresting
microscopic time unit for coarsening. In [189] the coarsening dynamics are described by
studying with random walk arguments the loss and gain of particles in neighbouring clusters,
mediated by stationary transport in the fluid phase in between. The time that particles lost
from a cluster spend in between clusters is of the same order as the time required to dissolve
a cluster completely. Hence this time scale is the appropriate coarsening time scale. In the
totally asymmetric case, excess particles leave a cluster site with n particles at a rate b/n

and therefore the typical time required to dissolve such a cluster is given by ta(n) ∼ n2/b.
Inverting this scaling relation yields the growth law

n̄(t) ∼ (bt)1/2 (4.19)

for the mean cluster size n̄. From (4.19) one reads off the dynamical exponent z = 2 in the
asymmetric condensed phase.

Because of the recurrence of a one-dimensional (1D) random walk in the case of symmetric
hopping, a particle that got lost from a cluster is very likely to return to the cluster it left, in
contrast to the asymmetric case. It will be trapped by the next cluster only with a probability
inversely proportional to the diffusion distance, i.e., of the order (ρ − ρc)/m. So the typical
time of a particle to leave a cluster is of the order m2/(b(ρ − ρc)). Hence the coarsening time
scale is given by ts(n) ∼ ta(ρ − ρc)/m ∼ m3/[b(ρ − ρc)]. This results in the growth law

n̄(t) ∼ [b(ρ − ρc)t]
1/3 (4.20)

and dynamical exponent z = 3 in the symmetric case. A similar growth law which can be
rationalized using analogous arguments is known for equilibrium Kawasaki dynamics (2.12)
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at very low temperatures [190, 191]. For biased coarsening dynamics with conserved order
parameter one has z = 2 [192, 193], in agreement with (4.19). The coarsening stops when
only one macroscopic cluster is left. The typical time of a macroscopic fluctuation of the
cluster size diverges exponentially with the system size L [189].

The growth laws (4.19) and (4.20) were confirmed by Monte Carlo simulations of the
ZRP [189]. The critical exponents were obtained independently by numerically studying the
second moment of the local density [194]. Also a universal scaling function for the cluster
size distribution was obtained. At the critical density itself Monte Carlo simulations suggest
dynamical exponents zc ≈ 3 for the asymmetric case and zc ≈ 5 for the symmetric case. A
theoretical derivation of these exponents is lacking.

5. Conclusions and open questions

During the last decade the study of one-dimensional driven diffusive systems has contributed
significantly to the understanding of critical phenomena far from equilibrium, where
‘understanding’ not only refers to the characterization of nonequilibrium universality classes
in terms of critical exponents, but also to the identification of some of the coarse-grained
dynamical mechanisms that generate these critical phenomena. Exact results for simple
model systems such as the ASEP have played a crucial role in advancing and shaping this
understanding. They have provided deep and detailed insights into robust generic phenomena
which could then be generalized to more complicated systems.

This includes the derivation of exact hydrodynamic equations and asymptotic coarsening
laws from the microscopic laws of interaction, both rigorously and using more intuitive
physical arguments based on the application of conservation laws and using random walk
arguments. Thus complicated collective phenomena such as shocks can be viewed as effective
single-particle excitations with simple properties. Universal fluctuations determining the
dynamics on intermediate scales between the microscopic lattice scale and the macroscopic
Euler scale have been probed using test particles: tracer particles, second-class particles
and impurity particles. Thus some similarities to the still unresolved problem of localized
blockages could be established. The occurrence of stationary critical phenomena, namely
spontaneous symmetry breaking, long-range order and phase separation of two types, soft
and strong, could be linked to microscopic properties of the dynamics, listed in conditions
(I)–(IV) of section 4. Stability criteria (3.22), (3.24) for microscopically sharp domain walls
and coarsening dynamics of domains (4.15), (4.16) as well as the phase diagram of open
one-species systems (1.5) can be phrased directly in terms of the macroscopic current. We
conclude that the current–density relation (which is determined by microscopic parameters)
is a central quantity determining the large scale physics of driven diffusive systems. This is
fortunate in the sense that the current is usually relatively easy to measure or calculate. It
is crucial to know the current exactly, mean-field approximations are not likely to produce
even qualitatively (let alone quantitatively) correct features of the system, unless by chance
certain analytic properties of the mean-field current happen to coincide with those of the exact
current. However, this is not guaranteed even if bulk correlations in the stationary state are
short-range.

A major open question concerns the precise relationship of the various current criteria
and the microscopic criteria for phase separation. Addressing this issue leads to a series of
interrelated problems, each of which is interesting in its own right.

It is not clear how to deduce the stability of a domain wall in the stationary condensed
state or during the coarsening process (where the current is also stationary and independent of
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the density) from the stability criteria (3.22), (3.24). This requires a more careful analysis of
the behaviour of fluctuations in systems with two conservation laws and is intimately linked
to a hydrodynamic description of the dynamics above the critical density, which is an open
problem even within the framework of an effective ZRP description. The hydrodynamic
treatment of the blockage problem in the usual ASEP [149] may provide some insight.

Moreover, it would be highly desirable to have a unified picture which allows for an
application of the current criteria (4.15), (4.16) for phase separation to single-species systems
satisfying one of conditions (I)–(III) and thus to predict from the dependence of the domain
current on the microscopic parameters at which value of these parameters phase separation
sets in. This requires a proper definition of the current out of a domain in a system with one
conservation law which might then answer also the question whether soft phase separation is
possible if none of conditions (I)–(III) is satisfied. In a single-species system this condensation
phenomenon is reminiscent of spontaneous traffic jams in automobile traffic flow. Indeed,
traffic models with nonconserved internal degrees of freedom are known to exhibit soft phase
separation [195–198], but the minimal requirement for the existence of the phenomenon is not
entirely clear. The role of nonconserved internal degrees of freedom in critical phenomena
needs further clarification also in the theory of boundary-induced phase transitions which
requires some extension [199].

In this context it would be interesting to try to predict phase separation from the properties
of the current, using (3.22), (3.24). This has not been attempted yet even in systems where
both the current and the existence of phase separation are known and might shed light on
the possibility of phase separation between domains of nonextremal densities ρi = 0, 1 in
translation-invariant systems. The stability criterion (3.22) rules this out for generic current–
density relations in systems with one conservation law, but it is not tantamount to a no-go
theorem as a current which is constant in some density range may allow for such phase
separation.

A further promising and closely related direction of research concerns the hydrodynamics
of systems with more than one conservation law. The lack of a full hydrodynamic description
of particle systems with two conservation law still constitutes a major gap in understanding
both dynamic and critical stationary critical phenomena. The selection of the physical solution
using a regularization by adding a phenomenological viscosity term is not fully understood, as
the nature of such a term might not be as arbitrary as for systems with one conservation law.
This may be of importance not only for the bulk critical phenomena reviewed here, but also
for boundary-induced spontaneous symmetry breaking [200] and steady-state selection [31]
in open systems. There is no theory of boundary-induced phase transitions with an extremal
principle analogous to (1.5) that could explain quantitative features of the phase diagram in
terms of effective boundary densities as is possible for single-species models. Hence it is
difficult to make predictions of the stationary behaviour in open systems. For systems with
more than two conservation laws the problem is likely to be even more intricate, but possibly
also even more fascinating.

Universal properties of fluctuations which manifest themselves on scales below the Euler
scale are not readily accessible with the analytical methods reviewed in this paper. However,
with the tools of Bethe ansatz and random matrix theory they have become amenable to exact
treatment in the framework of the ASEP [5, 201]. It is natural to try to apply these techniques to
the general two-species ASEP or at least to the integrable cases. Universal quantities—critical
exponents and scaling functions, but also universal dynamical mechanisms such as evolution
of shocks and coarsening—derived from studying driven diffusive systems are ultimately
expected to be useful also in the investigation of real systems such as those listed above.
Therefore one needs to understand the role of the lattice in the phenomena discussed above.
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Passing to driven diffusive systems defined in spatial continuum by taking appropriate limits
may give an answer.
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[40] Schütz G M 1995 Reaction–diffusion processes of hard-core particles J. Stat. Phys. 79 243
[41] Dahmen S R 1995 Reaction–diffusion processes described by 3-state quantum chains and integrability J. Phys.

A: Math. Gen. 28 905
[42] Fujii Y and Wadati M 1997 Reaction–diffusion processes with multi-species of particles J. Phys. Soc. Japan

66 3770
[43] Mobilia M and Bares P-A 2001 Soluble two-species diffusion-limited models in arbitrary dimensions Phys.

Rev. E 63 036121
[44] Krug J and Spohn H 1991 Kinetic roughening of growing surfaces Solids Far From Equilibrium ed C Godréche
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[93] Popkov V, Santen L, Schadschneider A and Schütz G M 2001 Boundary-induced phase transition in traffic

flow J. Phys. A: Math. Gen. 34 L45
[94] Mallick K 1996 Shocks in the asymmetry exclusion model with an impurity J. Phys. A: Math. Gen. 29 5375
[95] Lee H-W, Popkov V and Kim D 1997 Two-way traffic flow: exactly solvable model of traffic jam J. Phys. A:

Math. Gen. 30 8497
[96] Jafarpour F H 2000 Exact solution of an exclusion model in the presence of a moving impurity on a ring

J. Phys. A: Math. Gen. 33 8673
[97] MacDonald J T, Gibbs J H and Pipkin A C 1968 Kinetics of biopolymerization on nucleic acid templates

Biopolymers 6 1
[98] MacDonald J T and Gibbs J H 1969 Concerning the kinetics of polypeptide synthesis on polyribosomes

Biopolymers 7 707
[99] von Heijne G, Blomberg C and Liljenström H 1987 Theoretical modelling of protein synthesis J. Theor. Biol.

125 1
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[142] Schütz G 1993 Generalized Bethe ansatz solution of a one-dimensional asymmetric exclusion process on a

ring with blockage J. Stat. Phys. 71 471
[143] Arndt P F, Heinzel T and Rittenberg V 1998 Spontaneous breaking of translational invariance in one-

dimensional stationary states on a ring J. Phys. A: Math. Gen. 31 L45
[144] Wolf D E and Tang L-H 1990 Inhomogeneous growth processes Phys. Rev. Lett. 65 1591
[145] Janowsky S A and Lebowitz J L 1992 Finite-size effects and shock fluctuations in the asymmetric simple

exclusion process Phys. Rev. A 45 618
[146] Brandstetter H 1991 Diploma Thesis University of Munich (unpublished)
[147] Rezakhanlou F 1991 Hydrodynamic limit for attractive particle systems on Z

d Commun. Math. Phys. 140 417
[148] Burgers J M 1974 The Nonlinear Diffusion Equation (Boston, MA: Riedel)
[149] Bahadoran C 1998 Hydrodynamical limit for spatially heterogeneous simple exclusion processes Probab.

Theory Rel. 110 287
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[178] Kafri Y, Levine E, Mukamel D, Schütz G M and Willmann R D 2002 Novel phase separation transition in
one-dimensional driven models Preprint cond-mat/0211269 (Phys. Rev. E at press)

[179] Sasamoto T and Zagier D 2001 On the existence of a phase transition for an exclusion process on a ring
J. Phys. A: Math. Gen. 34 5033

[180] Korniss G, Schmittmann B and Zia R K P 1999 Long-range order in a quasi one-dimensional nonequilibrium
three-state lattice gas Europhys. Lett. 45 431

[181] Mettetal J T, Schmittmann B and Zia R K P 2002 Coarsening dynamics of a quasi-one-dimensional driven
lattice gas Europhys. Lett. 58 653
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